Abstract

Studies were conducted to determine whether normal and/or neo-plastic (MCF-7) human breast epithelial cells contain the microsomal aryl hydrocarbon hydroxylase (AHH) which catalyses the conversion of polycyclic aromatic hydrocarbons (PAH) to carcinogenic intermediates. Low constitutive levels of AHH activity were found in homogenates of both normal human breast epithelial and MCF-7 cells. The addition of 7,12-dimethylbenz(a)anthracene (DMBA) to the culture medium of either cell type significantly increased AHH activity. Peak induction of hydroxylase activity occurred following the in vitro addition of 10 μM DMBA. A time course of DMBA-induced AHH activity in both normal human breast epithelium and MCF-7 cells revealed maximal induction 16 hr after 10 μM DMBA was added to the culture medium. Benzo(a)pyrene (BP), 3-methylcholanthrene (MCA) and benz(a)anthracene (BA) also induced AHH activity in normal and MCF-7 cells. For example, the addition of 10 μM BP to the culture medium of either normal human breast epithelial or MCF-7 cells for 16 hr increased AHH activity 13.8 and 65.3-fold, respectively. For all PAH, the magnitude of AHH induction was substantially greater in MCF-7 than normal breast epithelial cells. Finally, α-naphthoflavone inhibited BA-induced AHH activity in MCF-7 cells. The study demonstrates the presence of a PAH-inducible AHH enzyme(s) in normal human breast epithelial cells grown in primary culture and in the human breast tumor cell line, MCF-7.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call