Abstract
<div>Abstract<p>The oncogenic MUC1-C protein promotes dedifferentiation of castrate-resistant prostate cancer (CRPC) and triple-negative breast cancer (TNBC) cells. Chromatin remodeling is critical for the cancer stem cell (CSC) state; however, there is no definitive evidence that MUC1-C regulates chromatin accessibility and thereby expression of stemness-associated genes. We demonstrate that MUC1-C drives global changes in chromatin architecture in the dedifferentiation of CRPC and TNBC cells. Our results show that MUC1-C induces differentially accessible regions (DAR) across their genomes, which are significantly associated with differentially expressed genes (DEG). Motif and cistrome analysis further demonstrated MUC1-C–induced DARs align with genes regulated by the JUN/AP-1 family of transcription factors. MUC1-C activates the BAF chromatin remodeling complex, which is recruited by JUN in enhancer selection. In studies of the <i>NOTCH1</i> gene, which is required for CRPC and TNBC cell self-renewal, we demonstrate that MUC1-C is necessary for (i) occupancy of JUN and ARID1A/BAF, (ii) increases in H3K27ac and H3K4me3 signals, and (iii) opening of chromatin accessibility on a proximal enhancer–like signature. Studies of the <i>EGR1</i> and <i>LY6E</i> stemness–associated genes further demonstrate that MUC1-C–induced JUN/ARID1A complexes regulate chromatin accessibility on proximal and distal enhancer–like signatures. These findings uncover a role for MUC1-C in chromatin remodeling that is mediated at least in part by JUN/AP-1 and ARID1A/BAF in association with driving the CSC state.</p>Implications:<p>These findings show that MUC1-C, which is necessary for the CRPC and TNBC CSC state, activates a novel pathway involving JUN/AP-1 and ARID1A/BAF that regulates chromatin accessibility of stemness-associated gene enhancers.</p></div>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.