Abstract

<div>Abstract<p>The bromodomain family member proteins (BRD; BET proteins) are key coregulators for estrogen receptor alpha (ERα)-mediated transcriptional enhancers. The use of BRD-selective inhibitors has gained much attention as a potential treatment for various solid tumors, including ER-positive breast cancers. However, the roles of individual BET family members have largely remained unexplored. Here, we describe the role of BRDs in estrogen (E2)-dependent gene expression in ERα-positive breast cancer cells. We observed that chemical inhibition of BET family proteins with JQ1 impairs E2-regulated gene expression and growth in breast cancer cells. In addition, RNAi-mediated depletion of each BET family member (BRDs 2, 3, and 4) revealed partially redundant roles at ERα enhancers and for target gene transcription. Furthermore, we found a unique role of BRD3 as a molecular sensor of total BET family protein levels and activity through compensatory control of its own protein levels. Finally, we observed that BRD3 is recruited to a subset of ERα-binding sites (ERBS) that are enriched for active enhancer features, located in clusters of ERBSs likely functioning as “super enhancers,” and associated with highly E2-responsive genes. Collectively, our results illustrate a critical and specific role for BET family members in ERα-dependent gene transcription.</p>Implications:<p>BRD3 is recruited to and controls the activity of a subset ERα transcriptional enhancers, providing a therapeutic opportunity to target BRD3 with BET inhibitors in ERα-positive breast cancers.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.