Abstract

<div>Abstract<p>There continues to be interest in targeting epigenetic “readers, writers, and erasers” for the treatment of cancer and other pathologies. However, a mechanistic understanding is frequently lacking for the synergy observed when combining deacetylase and bromodomain inhibitors. Here we identify cell cycle and apoptosis regulator 2 (CCAR2) as an early target for acetylation in colon cancer cells treated with sulforaphane. N-terminal acetylation of CCAR2 diminished its interactions with histone deacetylase 3 and β-catenin, interfering with Wnt coactivator functions of CCAR2, including in cells harboring genetically encoded CCAR2 acetylation. Protein domain arrays and pull-down assays identified acetyl “reader” proteins that recognized CCAR2 acetylation sites, including BRD9 and members of the bromodomain and extraterminal domain (BET) family. Treatment with the BET inhibitor JQ1 synergized with sulforaphane in colon cancer cells and suppressed tumor development effectively in a preclinical model of colorectal cancer. Studies with sulforaphane+JQ1 in combination implicated a BET/BRD9 acetyl switch and a shift in the pool of acetyl “reader” proteins in favor of BRD9-regulated target genes.</p>Significance:<p>These results highlight the competition that exists among the “readers” of acetylated histone and nonhistone proteins and provide a mechanistic basis for potential new therapeutic avenues involving epigenetic combination treatments.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.