Abstract
Abstract: Data envelopment analysis (DEA) is a non‐parametric method for measuring the efficiency and productivity of decision‐making units (DMUs). On the other hand data mining techniques allow DMUs to explore and discover meaningful, previously hidden information from large databases. Classification and regression (C&R) is the commonly used decision tree in data mining. DEA determines the efficiency scores but cannot give details of factors related to inefficiency, especially if these factors are in the form of non‐numeric variables such as operational style in the banking sector. This paper proposes a framework to combine DEA with C&R for assessing the efficiency and productivity of DMUs. The result of the combined model is a set of rules that can be used by policy makers to discover reasons behind efficient and inefficient DMUs. As a case study, we use the proposed methodology to investigate factors associated with the efficiency of the banking sector in the Gulf Cooperation Council countries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.