Abstract

Image quality assessment is a critical problem for image compression, which can be utilized as a guidance for image compression and codec evaluation. In this paper, we propose a full reference image quality assessment (IQA) algorithm to measure the perceptual quality of compressed images. The proposed IQA model utilizes a data-driven transform, multi-stage Karhunen-Loeve Transform (MS-KLT), as a feature extractor to decompose both reference and compressed images into feature domain, where the importance of feature distortions in different spectral components to human visual system (HVS) is easy to distinguish. Accordingly, an efficient weighting strategy is proposed to reflect the importance of feature distortions based on the energy of transformed coefficients. Considering HVS characteristics, weighted spatial masking effect is derived from both local and global perspectives. In addition, to avoid influences of random noises, a local adaptive low-pass filtering process is applied as a pre-processing operation. Extensive experimental results on popular datasets show that our proposed method correlates better with the subjective results compared with the state-of-the-art algorithms. Moreover, the proposed method behaves more robustly compared with existing methods, and achieves top-ranking performance on different IQA datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.