Abstract
This study estimates agricultural soil variables using a non-parametric machine learning technique based on Lipschitz interpolation. This method is adapted for the first time to learn spatio-temporal dynamics, accounting for two-dimensional spatial and one temporal coordinate inputs separately. The estimator is validated on real agricultural data, addressing challenges like measurement noise and quantization. The experimental setup, including an edge layer with measurement devices and a cloud layer for data storage and processing, is detailed. Despite its simplicity, the method presents a compelling alternative to Gaussian processes and neural networks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have