Abstract

This study estimates agricultural soil variables using a non-parametric machine learning technique based on Lipschitz interpolation. This method is adapted for the first time to learn spatio-temporal dynamics, accounting for two-dimensional spatial and one temporal coordinate inputs separately. The estimator is validated on real agricultural data, addressing challenges like measurement noise and quantization. The experimental setup, including an edge layer with measurement devices and a cloud layer for data storage and processing, is detailed. Despite its simplicity, the method presents a compelling alternative to Gaussian processes and neural networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.