Abstract

A general method for testing the martingale difference hypothesis is proposed. The new tests are data-driven smooth tests based on the principal components of certain marked empirical processes that are asymptotically distribution-free, with critical values that are already tabulated. The smooth tests are shown to be optimal in a semiparametric sense discussed in the paper, and they are robust to conditional heteroscedasticity of unknown form. A simulation study shows that the data-driven smooth tests perform very well for a wide range of realistic alternatives and have more power than omnibus and other competing tests. Finally, an application to the S&P 500 stock index and some of its components highlights the merits of our approach. The paper also contains a new weak convergence theorem that is of independent interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.