Abstract

In recent years several authors have recommended smooth tests for testing goodness of fit. However, the number of components in the smooth test statistic should be chosen well; otherwise, considerable loss of power may occur. Schwarz's selection rule provides one such good choice. Earlier results on simple null hypotheses are extended here to composite hypotheses, which tend to be of more practical interest. For general composite hypotheses, consistency of the data-driven smooth tests holds at essentially any alternative. Monte Carlo experiments on testing exponentiality and normality show that the data-driven version of Neyman's test compares well to other, even specialized, tests over a wide range of alternatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.