Abstract

A machine’s Remaining Useful Life (RUL) is the expected life or usage time remaining before the machine requires repair or replacement. In data-driven methods, typical RUL estimation is performed using models trained with health condition indicator values derived from measured system data. A significant challenge in developing an RUL estimation model is transforming large, multivariate, noisy sensor datasets into useful format(s) that make the data analysis and processing pipeline efficient and extract valuable condition indicators from the data. This work uses the N-CMAPSS dataset to explore options and implications for efficiently organizing and storing large time-series datasets to support prognostics and diagnostics applications. We extend the work to demonstrate a predictive maintenance workflow and solution to (1) detect and classify faults in a turbofan engine and (2) estimate the RUL once we detect performance degradation. Under data engineering, we investigate the impact of various file formats and file types on memory and execution time when dealing with large datasets like N-CMAPSS. We analyze, pre-process, and extract/engineer critical features from the transformed dataset by leveraging our understanding of gas turbines' operation (e.g., Brayton Cycle). We also analyze the performance of various engine submodules for different flight phases (climb, cruise, and descent). This work also explains an approach to down-sample the time series data without losing information relevant to our goals. Using the health condition indicators derived and synthesized in the data engineering stage, we train machine learning models for diagnostics (differentiate between healthy operation and seven different types of faults in the turbofan engine) and prognostics (RUL estimation).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call