Abstract

This paper investigates the use of a data-driven method to model the dynamics of the chaotic Lorenz system. An architecture based on a recurrent neural network with long and short term dependencies predicts multiple time steps ahead the position and velocity of a particle using a sequence of past states as input. To account for modeling errors and make a continuous forecast, a dense artificial neural network assimilates online data to detect and update wrong predictions such as non-relevant switchings between lobes. The data-driven strategy leads to good prediction scores and does not require statistics of errors to be known, thus providing significant benefits compared to a simple Kalman filter update.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.