Abstract
Deep learning incorporating physics knowledge has become a powerful tool for studying the dynamic behavior of high-dimensional nonlinear systems. In this paper, the two-stage mini-batch resampling of adaptive physics-informed neural network (TMA-PINN) method is proposed to solve the (2 + 1)-dimensional variable-coefficient Lugiato-Lefever equation (vLLE). The vortex soliton in the WGM microresonator with different external excitation is investigated by TMA-PINN. It is found that external excitation can cause the rotation of vortex solitons. In addition, the effect of topological charge and external excitation on the dynamical characteristics of spatial solitons including vortex solitons and multipole solitons are investigated. The results show that the final shape of the rotation of vortex solitons and the number of azimuth lobes of multipole solitons are controlled by topological charges. Compared with classical PINN, TMA-PINN can better handle the gradient balance of various loss terms in (2 + 1)-dimensional vLLE to reconstruct the dynamic behavior of WGM microresonator solitons, having potential applications in other nonlinear systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.