Abstract

Feedforward control has been widely used to improve the tracking performance of precision motion systems. This paper develops a new data-driven feedforward tuning approach associated with rational basis functions. The aim is to obtain the global optimum with optimal estimation accuracy. First, the instrumental variable is employed to ensure the unbiased estimation of the global optimum. Then, the optimal instrumental variable which leads to the highest estimation accuracy is derived, and a new refined instrumental variable method is exploited to estimate the optimal instrumental variable. Moreover, the estimation accuracy of the optimal parameter is further improved through the proposed parameter updating law. Simulations are conducted to test the parameter estimation accuracy of the proposed approach, and it is demonstrated that the global optimum is unbiasedly estimated with optimal parameter estimation accuracy in terms of variance with the proposed approach. Experiments are performed and the results validate the excellent performance of the proposed approach for varying tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.