Abstract
This paper presents a data-driven approach that utilizes the gathered experimental data to model and control a test rig constructed for the high-powered gearboxes. For simulating a wide variety of operational conditions, the test rig should be capable of providing different speeds and torques; this is possible using a torque-applying system. For this purpose, Electro-Hydraulic Actuators (EHAs) are used. Since applying accurate torque is a crucial demand as it affects the performance evaluation of the gearboxes, precise modelling of the actuation system along with a high-performance controller are required. In order to eliminate the need to solve complex nonlinear equations of EHA that originate from friction, varying properties of flow and similar, a data-driven system based on neural networks is used for modelling. In this manner, the model of the system, which captures the whole dynamic of the system, can be obtained without any simplifying assumptions. The model is validated with experimental data, and the learning factors are set to zero to reduce the high computational costs. After that, another network of neurons is used as a controller. The performance of the proposed controller under normal conditions and in the presence of disturbances are investigated. The results show a good tracking of this controller for various reference inputs in different conditions with acceptable characteristics. Additionally, the obtained results are compared with a conventional proportional-integral-derivative (PID) controller results, and the superior features of the proposed scheme is concluded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Strojniški vestnik – Journal of Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.