Abstract

Ternary-blend concrete is a complex composite material, and the nonlinearity in its compressive strength behavior is unquestionable. Entirely many models have been developed to accurately predict the ternary-blend concrete compressive strength, such as ANN, SVM, random forest, decision tree, to mention but a few. This study underscores the better predictive performance and successful application of the least square support vector machine (LSSVM), a machine learning model for predicting the compressive strength of ternary-blend concrete. Coupled simulated annealing (CSA) was applied to the LSSVM model as an optimization algorithm. In addition, the genetic programming (GP) model was used as a benchmark model to compare the performance of the LSSVM-CSA model. The predictive performance of the LSSVM-CSA was compared with that of some of the proposed models in well-known studies where the same datasets were used. The model proposed in this study outperformed other studies, yielding an R2 value of 0.954.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call