Abstract
The prediction of wastes generated in the hospital will help their management for several activities like storage, transport and disposing. This chapter adopts Support Vector Machine (SVM), Least Square Support Vector Machine (LSSVM) and Genetic Programming (GP) in order to estimate the rate of medical waste generation. In the event of predicting the rate, type of hospital, capacity and bed occupancy has been used as inputs of SVM, LSSVM and GP. SVM is based on statistical learning theory, which provides an elegant tool for nonlinear system modeling. LSSVM is the re-formulation to the general SVM. GP, a best part of evolutionary algorithm and also the specification of Genetic Algorithm (GA). These SVM, LSSVM and GP have been used as the regression techniques. The results show the performance of the developed SVM, LSSVM and GP models were elegant and outstanding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.