Abstract
Minimal dimensional models are desirable for reduced computational costs in simulations as well as for applications such as model-based control. Long-time dynamics of flows often evolve on a low-dimensional manifold M in the full state space. We use neural networks to estimate M and the dynamics on it for two-dimensional Kolmogorov flow in a chaotic bursting regime. Outcomes include: a minimal dimension estimate, good short-time tracking and long-time statistics, as well as accurate predictions of bursting events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.