Abstract
The symmetries, dynamics, and control problem of the two-dimensional (2D) Kolmogorov flow are addressed. The 2D Kolmogorov flow is known as the 2D Navier-Stokes (N-S) equations with periodic boundary conditions and with a sinusoidal external force along the x-direction. First, using the Fourier Galerkin method on the original 2D Navier-Stokes equations, we obtain a seventh-order system of nonlinear ordinary differential equations (ODEs) which approximates the behavior of the Kolmogorov flow. The dynamics and symmetries of the reduced seventh-order ODE system are analyzed through computer simulations for the Reynolds number range 0<Re<26.41. Extensive numerical simulations show that the obtained system is able to display the different behaviors of the Kolmogorov flow. Then, we design Lyapunov based controllers to control the dynamics of the system of ODEs to different attractors (e.g., a fixed point, a periodic orbit, or a chaotic attractor). Finally, numerical simulations are undertaken to validate the theoretical developments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.