Abstract

We present a data-driven method to learn stochastic reduced models of complex systems that retain a state-dependent memory beyond the standard generalized Langevin equation with a homogeneous kernel. The constructed model naturally encodes the heterogeneous energy dissipation by jointly learning a set of state features and the non-Markovian coupling among the features. Numerical results demonstrate the limitation of the standard generalized Langevin equation and the essential role of the broadly overlooked state-dependency nature in predicting molecule kinetics related to conformation relaxation and transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.