Abstract

Motivated by the real-world inventory management problem of a large network of pharmacies, this paper proposes and studies a practically relevant Prescriptive Analytics approach for data-driven dynamic inventory control of large portfolios of interrelated products. We extend existing research on weighted Sample Average Approximation by integrating a ‘global learning’ model that effectively exploits cross-learning opportunities within the product portfolio. The results of an extensive numerical evaluation on real-world data suggest that our approach outperforms relevant benchmarks—in particular, models that rely on ‘local learning’ strategies where weight functions are trained separately for each product. The numerical results also allow us to derive important practical and structural insights regarding the value of contextual information in our global learning framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.