Abstract

Traditional fluid simulations require large computational resources even for an average sized scene with the main bottleneck being a very small time step size, required to guarantee the stability of the solution. Despite a large progress in parallel computing and efficient algorithms for pressure computation in the recent years, realtime fluid simulations have been possible only under very restricted conditions. In this paper we propose a novel machine learning based approach, that formulates physics-based fluid simulation as a regression problem, estimating the acceleration of every particle for each frame. We designed a feature vector, directly modelling individual forces and constraints from the Navier-Stokes equations, giving the method strong generalization properties to reliably predict positions and velocities of particles in a large time step setting on yet unseen test videos. We used a regression forest to approximate the behaviour of particles observed in the large training set of simulations obtained using a traditional solver. Our GPU implementation led to a speed-up of one to three orders of magnitude compared to the state-of-the-art position-based fluid solver and runs in real-time for systems with up to 2 million particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.