Abstract

Recently, fluid simulation computation is not only limited for research or industrial purpose but can also be implemented into personal computer software. With the advent of interactive real-time fluid simulation. One challenge of real-time fluid simulation is to simulate interaction between fluids and solid bodies. In this paper, we extend a two-dimensional material-point method (MPM) based fluid simulation with fluid particle and solid body surface interaction calculation. To simulate the interactions, we use several geometry concepts such as reflection and shape in order to formulate the necessary equations of fluid particle velocity change. The equation is then implemented into an existing MPM-based fluid simulation. Based on the benchmark results, the proposed fluid-solid body interaction method is viable for real-time fluid simulation. Performance drop between 21%–26% is observed in the implementation, with the maximum number of particles to be simulated while maintaining the average frame rate above 30 FPS is 75,000 particles. Finally, we found that the number of particles and solid body complexity affects the fluid simulation performance, while the number of solid body polygons does not affect the fluid simulation performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call