Abstract

Data-driven feedforward tuning enables high performance for control systems that perform varying tasks by using past measurement data. The aim of this paper is to develop an approach for data-driven feedforward tuning that achieves high accuracy and at the same time is computationally inexpensive. A linear parametrization is employed that enables parsimonious modeling of inverse systems for feedforward through the use of non-causal rational orthonormal basis functions in L2. The benefits of the proposed parametrization are experimentally demonstrated on an industrial printer, including pre-actuation and cyclic pole repetition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.