Abstract

Since the manual extraction of features is not sufficient to accurately characterize the health status of rolling bearings, machine learning algorithms are gradually being used for fault diagnosis of bearings, which can adaptively learn the required features from the input data. In this paper, k -nearest neighbor, support vector machines, and convolutional neural networks are successfully applied to the fault diagnosis of bearings, for the benefit of achieving the detection and early warning of bearing fatigue damage. The original samples are segmented into semioverlapping samples. When using k -nearest neighbor and support vector machines as early warning models, we searched their hyperparameters with random search and grid search, and the results showed that support vector machines could achieve 87.1% of bearing detection accuracy and k -nearest neighbor could achieve 100% of detection accuracy. When convolutional neural networks are used as the early warning model, the accuracy can reach 99.75%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.