Abstract

In this paper, a robust data-driven fault detection approach is proposed with application to a wind turbine benchmark. The main challenges of the wind turbine fault detection lie in its nonlinearity, unknown disturbances as well as significant measurement noise. To overcome these difficulties, a data-driven fault detection scheme is proposed with robust residual generators directly constructed from available process data. A performance index and an optimization criterion are proposed to achieve the robustness of the residual signals related to the disturbances. For the residual evaluation, a proper evaluation approach as well as a suitable decision logic is given to make a correct final decision. The effectiveness of the proposed approach is finally illustrated by simulations on the wind turbine benchmark model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call