Abstract

In this paper, a robust data-driven fault detection approach is proposed with application to a wind turbine benchmark. The main challenges of the wind turbine fault detection lie in its nonlinearity, unknown disturbances as well as significant measurement noise. To overcome these difficulties, a data-driven fault detection scheme is proposed with robust residual generators directly constructed from available process data. A performance index and an optimization criterion are proposed to achieve the robustness of the residual signals related to the disturbances. For the residual evaluation, a proper evaluation approach as well as a suitable decision logic is given to make a correct final decision. The effectiveness of the proposed approach is finally illustrated by simulations on the wind turbine benchmark model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.