Abstract

This paper investigates a new scheme for fault detection and isolation based on time series and data analysis. This scheme is applied in wind turbines which are used to tap the potential of renewable energy. The proposed scheme is performed in two steps and it is based on process data without using any kind of physical modeling. The first step, the fault detection, is based on an alternative method based on the Gibbs sampling algorithm in which the occurrence of a sensor fault is modeled as a change point detection in a time series. The second step, the fault isolation, is handled via a Fuzzy/Bayesian network scheme classifying the kind of fault. The proposed fault detection and isolation (FDI) strategy offers as main contribution the independence from any kind of dynamical modeling and the unprecedented usage of the Gibbs sampling. Furthermore, this work offers a novel data driven FDI approach based on Fuzzy-Bayesian inference and suitable for the wind turbines systems. This approach presents a good performance for detection and diagnostics of sensor faults in a standard wind turbine benchmark.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.