Abstract

For positioning and anti-swing control of bridge cranes, the active learning control method can reduce the dependence of controller design on the model and the influence of unmodeled dynamics on the controller’s performance. By only using the real-time online input and output data of the bridge crane system, the active learning control method consists of the finite-dimensional approximation of the Koopman operator and the design of an active learning controller based on the linear quadratic optimal tracking control. The effectiveness of the control strategy for positioning and anti-swing of bridge cranes is verified through numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.