Abstract

Sorting is a fundamental task in computing and plays a central role in information technology. The advent of rack-scale and warehouse-size data processing shaped the architecture of data analysis platforms towards supercomputing. In turn, established techniques on supercomputers have become relevant to a wider range of application domains. This work is concerned with multi-way mergesort with exact splitting on distributed memory architectures. At its core, our approach leverages a novel and parallel algorithm for multi-way selection problems. Remarkably concise, the algorithm relies on MPI_Allgather and MPI_ReduceScatter_block, two collective communication schemes that find hardware support in most high-end networks. A software implementation of our approach is used to process the Terabyte-size Data Challenge 2 signal, released by the SKA radio telescopes organization. On the supercomputer considered herein, our approach outperforms the state of the art by up to 2.6X using 9,216 cores. Our implementation is released as a compact open source library compliant to the MPI programming model. By supporting the most popular elementary key types, and arbitrary fixed-size value types, the library can be straightforwardly integrated into third-party MPI-based software.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.