Abstract
Inevitable process variations (PVT) brought by both the magnetic tunneling junction (MTJ) and MOSFET based on the complementary metal-oxide semiconductor (CMOS) technology become a major obstacle for the mass production of spin transfer torque magnetic random access memory (STT-MRAM). The detriment of the process variations leads to a serious degradation in the fundamental yield with the shrinkage of the technology nodes. However, the conventional data-cell-variation-tolerant (DCVT) sense scheme cannot get the target read yield due to the limited sense margin (SM). To resolve this problem, a DCVT triple sampling non-destructive self-reference sensing scheme (TSNS) is proposed in the paper, which doubles the SM, with lower power consumption and better SM compared with the conventional DCVT sense scheme. Monte Carlo simulation with industry-compatible 65-nm model parameters results show that the proposed sensing scheme shows over 2.5 times higher SM and less power consumption compared to the previous self-reference circuit. The proposed sensing scheme can get the target read yield with lower power consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.