Abstract
In this paper, we present an ensemble modeling approach for sentiment analysis using machine learning algorithms. The main goal of sentiment analysis is to develop estimators that are able to identify the sentiment orientation (positive, negative, or neutral) of sentences found in any arbitrary source. The novel approach presented here relies on the analysis of the words found in sentences and the formation of large sets of heterogeneous models, i.e., binary as well as multi-class classification models that are calculated by various different machine learning methods; these models shall represent the relationship between the presence of given words (or combination of words) and sentiments. All models trained during the learning phase are applied during the test phase and the final sentiment assessment is annotated with a confidence value that specifies, how reliable the models are regarding the presented decision. In the empirical part of this paper, we show results achieved using a German corpus of Amazon recensions and a set of machine learning methods (decision trees and adaptive boosting, Gaussian processes, random forests, k-nearest neighbor classification, support vector machines and artificial neural networks with evolutionary feature and parameter optimization, and genetic programming). Using a heterogeneous model ensemble learning approach that combines multi-class classifiers as well as binary classifiers, the classification accuracy can be increased significantly and the ratio of totally wrongly classified samples (i.e., those that are assigned to the completely opposite sentiment orientation) can be decreased significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.