Abstract
Accurate valve flow rate prediction is essential for the flow control process of independent metering (IM) hydraulic valve. Traditional estimation methods are difficult to meet the high-precision requirements under the restricted space of the valve. Thus data-based flow rate prediction method for IM valve has been proposed in this study. We took the four-spool IM valve as the research object, and carried out the IM valve experiments to generate labeled data. Picking up the post-valve pressure and valve opening as input, we developed and compared eight different data-based estimation models, including machine learning and deep learning. The results indicated that the SVR and DNN with three hidden layers performed better than others on the whole dataset in the trade-off of overfitting and precision. And MAPE of these two models was close to 4%. This study provides further guidelines on high-precision flow rate prediction of hydraulic valves, and has definite application value for development of digital and intelligent hydraulic systems in construction machinery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.