Abstract
Sequential recommendation has recently attracted increasing attention from the industry and academic communities. While previous models have achieved remarkable successes, an important problem may still hinder their performances, that is, the sparsity of the real-world data. In this paper, we propose a novel counterfactual data augmentation framework to alleviate the problem of data sparsity. In specific, our framework contains a sampler model and an anchor model. The sampler model aims to generate high-quality user behavior sequences, while the anchor model is trained based on the original and new generated samples, and leveraged to provide the final recommendation list. To implement the sampler model, we firstly design four types of heuristic methods based on either random or frequency-based strategies. And then, to improve the quality of the generated sequences, we propose two learning-based samplers by discovering the decision boundaries or increasing the sample informativeness. At last, we build an RL based model to automatically determine where to edit the history behaviors and how many items should be replaced. Considering that the sampler model can be imperfect, we, at last, analyze the influence of the noisy information contained in the generated sequences on the anchor model in theory, and design a simple but effective method to better serve the anchor model. We conduct extensive experiments to demonstrate the effectiveness of our model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.