Abstract

Machine learning (ML) based algorithms, due to their ability to model nonlinear and complex relationship, have been used in predicting corrosion pit depth in oil and gas pipelines. Class imbalance and data scarcity are the challenging problems while training ML models. This paper utilized a conditional generative adversarial network (cGAN) to handle class imbalance problem in a corrosion dataset by generating new samples. Utility of the cGAN data augmentation is evaluated by training an artificial neural network (ANN) model. In addition, random oversampling and Borderline-SMOTE data generating techniques are used for comparison with cGAN. The testing accuracy of the ANN model increased greatly when trained by the cGAN based augmented dataset and this model performance improvement can be useful for a pipeline integrity management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.