Abstract

This work presents a novel data-centric solution for fault diagnostics and failure prognostics consisting of a data-augmentation method which is well suited for non-stationary mutivariate time-series data. The method, based on time-varying autoregressive processes, can be employed to extract key information from a limited number of samples and generate new artificial samples in a way that benefits the development of diagnostics and prognostics solutions. The proposed approach is tested based on three real-world datasets associated with failure diagnostics problems using two types of machine learning methods. Results indicate the proposed method improves performance in all tested cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.