Abstract
Assimilating real-time sensor data into large-scale spatial-temporal simulations, such as simulations of wildfires, is a promising technique for improving simulation results. This asks for advanced data assimilation methods that can work with the complex structures and nonlinear behaviors associated with the simulation models. This article presents a data assimilation framework using Sequential Monte Carlo (SMC) methods for wildfire spread simulations. The models and algorithms of the framework are described, and experimental results are provided. This work demonstrates the feasibility of applying SMC methods to data assimilation of wildfire spread simulations. The developed framework can potentially be generalized to other application areas where sophisticated simulation models are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Modeling and Computer Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.