Abstract
Data assimilation is an important technique to improve simulation results by assimilating real time sensor data into a simulation model. A data assimilation framework based on Sequential Monte Carlo (SMC) methods for wildfire spread simulation has been developed in previous work. This paper provides systematic analysis and measurement to quantify the effectiveness and robustness of the developed data assimilation method. Measurement metrics are used to evaluate the robustness of SMC methods in data assimilation for wildfire spread simulation. Sensitivity analysis is carried out to examine the influences of important parameters to the data assimilation results. This work of analysis and quantification provides information to assess the effectiveness of the data assimilation method and suggests guidelines to further improve the data assimilation method for wildfire spread simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Modeling, Simulation, and Scientific Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.