Abstract
Data assimilation techniques were used to estimate forest stand data in 2011 by sequentially combining remote sensing based estimates of forest variables with predictions from growth models. Estimates of stand data, based on canopy height models obtained from image matching of digital aerial images at six different time-points between 2003 and 2011, served as input to the data assimilation. The assimilation routines were built on the extended Kalman filter. The study was conducted in hemi-boreal forest at the Remningstorp test site in southern Sweden (lat. 13°37′ N; long. 58°28′ E). The assimilation results were compared with two other methods used in practice for estimation of forest variables: the first was to use only the most recent estimate obtained from remotely sensed data (2011) and the second was to forecast the first estimate (2003) to the endpoint (2011). All three approaches were validated using nine 40 m radius validation plots, which were carefully measured in the field. The results showed that the data assimilation approach provided better results than the two alternative methods. Data assimilation of remote sensing time series has been used previously for calibrating forest ecosystem models, but, to our knowledge, this is the first study with real data where data assimilation has been used for estimating forest inventory data. The study constitutes a starting point for the development of a framework useful for sequentially utilizing all types of remote sensing data in order to provide precise and up-to-date estimates of forest stand parameters.
Highlights
Accurate information about forest stands is one of the keys to successful forest management and for efficient wood supply to the forest industry
The initial state (2003) was estimated from point clouds obtained from image matching
This study presents the first empirical results of data assimilation applied to the estimation of forest variables
Summary
Accurate information about forest stands is one of the keys to successful forest management and for efficient wood supply to the forest industry. Modern planning tools, such as the Heureka system [1], can be applied to support decision making in forestry. These tools rely on accurate information about the stands in the target forest area and have the potential to provide solutions to the spatiotemporal planning problem that go beyond what can be achieved by human intuition [2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.