Abstract

Summary The ensemble Kalman filter (EnKF) has been widely used for data assimilation. It is challenging, however, when the relation of state and observation is strongly nonlinear. For example, near the flooding front in an immiscible flow, directly updating the saturation by use of the EnKF may lead to nonphysical results. One possible solution, which may be referred to as the restarted EnKF (REnKF), is to update the static state (e.g., permeability and porosity) and rerun the forward model from the initial time to obtain the updated dynamic state (e.g., pressure and saturation). However, it may become time-consuming, especially when the number of assimilation steps is large. In this study, we develop a transformed EnKF (TEnKF), in which the state is represented by displacement as an alternative variable. The displacement is first transformed from the forecasted state, then updated, and finally transformed back to obtain the updated state. Because the relation between displacement and observation is relatively linear, this new method provides a physically meaningful updated state without resolving the forward model. The TEnKF is tested in the history matching of multiphase flow in a 1D homogeneous medium, a 2D heterogeneous reservoir, and a 3D PUNQ-S3 model. The case studies show that the TEnKF produces physical results without the oscillation problem that occurs in the traditional EnKF, whereas the computational effort is reduced compared with the REnKF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call