Abstract

Hyperspectral image compression using compressive sensing technique is very much important in the area of satellite image compression because it can greatly en hance the compression rate. The research work proposes a novel data adaptable sparse reconstruction algorithm for the reconstruction of hyperspectral images from compressive sensing measurements. In the proposed algorithm, compressive sensing technique is used for the compression of HSIs, where Gaussian i.i.d. matrix is used to generate compressive sensing measurements. The algorithm solves the optimization problem containing total variation regularization and data adaptable parameter terms. The regularization terms are added to provide hyperspectral data characteristics as priors into the objective function. The addition of priors helps in convergence of the algorithm into the desired solution. The algorithm alternatively reconstructs the end member matrix and abundance matrix instead of reconstructing the entire HSI at once, thereby reducing the computational complexity at the reconstruction process. To nullify the effect of modelling errors, debiasing is performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.