Abstract
In the realm of Internet of Things (IoT), wireless sensor networks (WSNs) have been the subject of ongoing research into the use of energy harvesting to capture ambient energy, and wireless power transfer (WPT) via a mobile charger to overcome the energy limitations of sensors. Moreover, to mitigate energy imbalance and reduce the number of hops, strategies have been developed to leverage cars or unmanned aerial vehicles (UAVs) as mobile sinks. The primary objective of this work is to increase network lifetime by reducing energy consumption of hotspot nodes and increasing the amount of data acquired from all sensors in an environment that combines the methods mentioned above.To achieve this objective, the proposed method involves developing multiple minimum depth trees (MDTs) for all nodes, considering the energy of the UAV and sensor nodes. Parent nodes prevent their own energy depletion and ensure data transmission without imbalance by adaptively controlling the data sensed at the nodes and their child nodes. Consequently, the energy depletion of nodes in hotspots is prevented, more sensory data is acquired, and balanced data collection from all nodes is achieved. Simulation results demonstrate that the proposed scheme outperforms other state-of-the-art methods in terms of reduced energy depletion, increased network connectivity, and the amount of data collected at the sink node. This scheme will be applied to applications that collect environmental data outdoors, such as climate measurement, to collect data uniformly and increase the lifespan of the network, thereby reducing network maintenance costs while collecting data effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.