Abstract

Resistance to taxane chemotherapy is frequently observed in metastatic prostate cancer. The androgen receptor (AR) is a major driver of prostate cancer and a key regulator of the G1-S cell-cycle checkpoint, promoting cancer cell proliferation by irreversible passage to the S-phase. We hypothesized that AR signaling inhibitor (ARSi) darolutamide in combination with docetaxel could augment antitumor effect by impeding the proliferation of taxane-resistant cancer cells. We monitored cell viability in organoids, tumor volume, and PSA secretion in patient-derived xenografts (PDX) and analyzed cell cycle and signaling pathway alterations. Combination treatment increased antitumor effect in androgen-sensitive, AR-positive prostate cancer organoids and PDXs. Equally beneficial effects of darolutamide added to docetaxel were observed in a castration-resistant model, progressive on docetaxel, enzalutamide, and cabazitaxel. In vitro studies showed that docetaxel treatment with simultaneous darolutamide resulted in a reduction of cells entering the S-phase in contrast to only docetaxel. Molecular analysis in the prostate cancer cell line LNCaP revealed an upregulation of cyclin-dependent kinase inhibitor p21, supporting blockade of S-phase entry and cell proliferation. Our results provide a preclinical support for combining taxanes and darolutamide as a multimodal treatment strategy in patients with metastatic prostate cancer progressive on ARSi and taxane chemotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call