Abstract

Abstract Prostate cancer metastasis to bone occurs in 50-90% of men with advanced disease for which there is no cure. Bone metastasis leads to debilitating fractures and severe bone pain. It is associated with disease progression, therapy resistance, poor prognosis, and rapid decline. Androgen ablation therapy is standard of care for advanced prostate cancer, however, the role of androgens in bone metastatic prostate cancer is not understood. The effects of anti-androgens as seen on bone scans can also be inconsistent with the biochemical PSA response. There are few pre-clinical models to understand the interaction between the bone microenvironment and prostate cancer. It is essential to understand the unique interaction of prostate cancer with the bone environment and to develop novel therapies that target these pathways. Here we report the development of novel patient-derived intra-femoral xenograft models of prostate bone metastatic cancer. METHODS: Surgical prostate cancer bone metastasis specimens were transplanted by direct injection into the femurs of Rag2-/-γc-/- mice or sub-cutaneously into the right flank. Patient-derived xenograft (PDX) tumors that grew out were analyzed for prostate cancer biomarker expression using quantitative RT-PCR and immunohistochemistry. Bone lesion formation was measured using micro-computed tomography (μCT). RESULTS: Prostate cancer surgical bone metastasis specimens have been collected from which we have established new serially transplantable, prostate cancer bone metastasis xenograft models – PCSD1, PCSD4 and PCSD5. PCSD1 (Prostate Cancer San Diego 1) was molecularly characterized as advanced, luminal epithelial-type prostate cancer. PCSD1 intra-femoral xenografts formed mixed osteoblastic/osteolytic lesions that closely mimicked those of the patient. Treatment with the anti-androgen, bicalutamide, did not inhibit intra-femoral PCSD1 xenograft growth although there was a decrease in PSA as seen in some patients treated with anti-androgen who had discordant PSA and bone scan tests. CONCLUSION: PCSD1, PCSD4 and PCSD5 are new patient-derived prostate cancer bone metastasis-derived xenograft models. PCSD1 xenograft model closely recapitulates the mixed osteolytic/osteoblastic bone metastatic lesions seen in patients, and we are using it to develop novel therapies for inhibiting prostate cancer growth in the bone-niche. Citation Format: Christina Jamieson, Christina Wu, Amy Strasner, Jason R. Woo, Michelle Muldong, Young B. Jeong, Michael A. Liss, Omer Raheem, Tomonori Yamaguchi, Heather Leu, Deborah Marshall, Sheldon Morris, Nicholas A. Cacalano, Koichi Masuda, Catriona H.M. Jamieson, Anna A. Kulidjian, Christopher J. Kane. Novel prostate cancer patient-derived xenograft models of bone metastatic castrate-resistant prostate cancer. [abstract]. In: Proceedings of the AACR Special Conference: The Translational Impact of Model Organisms in Cancer; Nov 5-8, 2013; San Diego, CA. Philadelphia (PA): AACR; Mol Cancer Res 2014;12(11 Suppl):Abstract nr A43.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call