Abstract

In this work, we consider a model of a defocusing nonlinear Schrödinger equation with a variable nonlinearity exponent. This is motivated by the study of a superfluid Fermi gas in the Bose–Einstein condensation (BEC)–Bardeen–Cooper–Schrieffer crossover. In particular, we focus on the relevant mean-field model in the regime from BEC to unitarity and especially consider the modification of the nearly black soliton oscillation frequency due to the variation in the nonlinearity exponent in a harmonic trapping potential. The analytical expressions given as a function of the relevant nonlinearity exponent are corroborated by numerical computations and also extended past the BEC limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.