Abstract
We study the existence of dark solitons of the defocusing cubic nonlinear Schrödinger (NLS) eqaution with the spatially-periodic potential and nonlinearity. Firstly, we propose six families of upper and lower solutions of the dynamical systems arising from the stationary defocusing NLS equation. Secondly, by regarding a dark soliton as a heteroclinic orbit of the Poincaré map, we present some constraint conditions for the periodic potential and nonlinearity to show the existence of stationary dark solitons of the defocusing NLS equation for six different cases in terms of the theory of strict lower and upper solutions and the dynamics of planar homeomorphisms. Finally, we give the explicit dark solitons of the defocusing NLS equation with the chosen periodic potential and nonlinearity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have