Abstract
Dark resonances were formed via electromagnetically induced transparency for the first time, to the best of our knowledge, involving magnetically induced ΔF=±2 atomic transitions of alkali metal atoms, which are forbidden at zero magnetic field. The probability of these transitions undergoes rapid growth when 300-3000G magnetic field is applied, allowing formation of dark resonances, widely tunable in the GHz range. It is established that for ΔF=+2 (ΔF=-2) transition, the coupling laser tuned to ΔF=+1 (ΔF=-1) transition of the hyperfine Λ-system must be σ+ (σ-) polarized, manifesting anomalous circular dichroism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.