Abstract

Plasmonic chirality, which has garnered significant attention in recent years due to its ability to generate strong near-field enhancement and giant circular dichroism (CD). Currently, various theories have been proposed to explain plasmonic extrinsic chirality, however, a comprehensively quantitative explanation for the high-order optical response of extrinsic metamolecule has yet to be established. Herein, we present a concise and quantitative explanation of the giant high-order extrinsic CD of a plasmonic nanocrescent, which origins from multipole decomposition in combination with the optical theorem. Our findings indicate that the high-order resonance modes exhibit giant CD comparable to dipolar modes and can be conveniently applied to the chiral recognition of metamolecules. Furthermore, the nonradiative electric quadrupole resonance exhibits enormous electric field enhancement near metamolecule, which has great application potential in the fields of molecular recognition and sensing in the visible region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.