Abstract

Dark Matter particles can be detected directly via their elastic scattering with nuclei. Next generation experiments can eventually find physical evidences about dark matter candidates. With this motivation in mind, we have calculated the expected signals of dark matter particles in xenon detectors. The calculations were performed by considering different masses and parameters within the minimal supersymmetric standard model. Since the detectors can also detect neutrinos, we have analyzed the supernova neutrino signal including a sterile neutrino in the formalism. Using this [Formula: see text] scheme, we make predictions for both the normal and inverse mass hierarchy. In order to perform a study of the response of planned direct-detection experiments, to be located in ANDES (Agua Negra Deep Experimental Site), we have calculated the neutrino contributions to the background by taken into account reactor’s neutrinos and geoneutrinos at the site of the lab. As a test detector, we take a Xenon1T-like array.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call