Abstract

We model the shape and density profile of the dark matter halo of the low surface brightness, superthin galaxy UGC 7321, using the observed rotation curve and the Hi scale height data as simultaneous constraints. We treat the galaxy as a gravitationally coupled system of stars and gas, responding to the gravitational potential of the dark matter halo. An isothermal halo of spherical shape with a core density in the range of 0.039–0.057M⊙pc-3 and a core radius between 2.5 and 2.9kpc, gives the best fit to the observations for a range of realistic gas parameters assumed. We find that the best-fit core radius is only slightly higher than the stellar disc scale length (2.1kpc), unlike the case of the high surface brightness galaxies where the halo core radius is typically 3–4 times the disc scale length of the stars. Thus our model shows that the dark matter halo dominates the dynamics of the low surface brightness, superthin galaxy UGC 7321 at all radii, including the inner parts of the galaxy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.