Abstract
We find that models of MeV-GeV dark matter in which dark matter interacts strongly can be constrained by the observation of gravitational waves from binary neutron star (BNS) mergers. Trace amounts of dark matter, either produced during the supernova or accreted later, can alter the structure of neutron stars (NS) and influence their tidal deformability. We focus on models of dark matter interacting by the exchange of light vector gauge bosons that couple to a conserved dark charge. In these models, dark matter accumulated in neutron stars can extend to large radii. Gravitational waves detected from the first observed BNS merger GW170817 places useful constraints on such not-so compact objects. Dark halos, if present, also predict a greater variability of neutron star tidal deformabilities than expected for ordinary neutron stars.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have