Abstract

Nanoparticle plasmon scattering can provide real-time imaging information on the formation process of noble metal-based nanomaterials. Due to the synergistic effect of the interface between metal and oxide supporting pores, metal nanoparticles (NPs), especially Au NPs, generally exhibit higher catalytic activity on oxide carriers than single-component NPs. Here, we use the dark field scattering microscope to in situ monitor the growth of Au on Cu2O surface by oxidation-reduction reactions and the nanostructures could be precisely controlled via the scattering signal. The prepared Cu2O/Au nanocomposite has a higher electrocatalytic activity toward Glucose. When being used as a potential biosensor for nonenzyme glucose detection, excellent performance, such as high sensitivity with a detection limit of 4 μM, high selectivity and outstanding stability, was obtained. The scattering imaging strategy is a convenient and universal approach in controllable synthesis of plasmonic heterostructures, and leads to the improvement of electrocatalysts in biosensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call